Search results for "Bianchi group"
showing 4 items of 4 documents
On the representation of integers by indefinite binary Hermitian forms
2011
Given an integral indefinite binary Hermitian form f over an imaginary quadratic number field, we give a precise asymptotic equivalent to the number of nonequivalent representations, satisfying some congruence properties, of the rational integers with absolute value at most s by f, as s tends to infinity.
Integral binary Hamiltonian forms and their waterworlds
2018
We give a graphical theory of integral indefinite binary Hamiltonian forms $f$ analogous to the one by Conway for binary quadratic forms and the one of Bestvina-Savin for binary Hermitian forms. Given a maximal order $\mathcal O$ in a definite quaternion algebra over $\mathbb Q$, we define the waterworld of $f$, analogous to Conway's river and Bestvina-Savin's ocean, and use it to give a combinatorial description of the values of $f$ on $\mathcal O\times\mathcal O$. We use an appropriate normalisation of Busemann distances to the cusps (with an algebraic description given in an independent appendix), and the $\operatorname{SL}_2(\mathcal O)$-equivariant Ford-Voronoi cellulation of the real …
A Survey of Some Arithmetic Applications of Ergodic Theory in Negative Curvature
2017
This paper is a survey of some arithmetic applications of techniques in the geometry and ergodic theory of negatively curved Riemannian manifolds, focusing on the joint works of the authors. We describe Diophantine approximation results of real numbers by quadratic irrational ones, and we discuss various results on the equidistribution in \(\mathbb{R}\), \(\mathbb{C}\) and in the Heisenberg groups of arithmetically defined points. We explain how these results are consequences of equidistribution and counting properties of common perpendiculars between locally convex subsets in negatively curved orbifolds, proven using dynamical and ergodic properties of their geodesic flows. This exposition…
On the arithmetic and geometry of binary Hamiltonian forms
2011
Given an indefinite binary quaternionic Hermitian form $f$ with coefficients in a maximal order of a definite quaternion algebra over $\mathbb Q$, we give a precise asymptotic equivalent to the number of nonequivalent representations, satisfying some congruence properties, of the rational integers with absolute value at most $s$ by $f$, as $s$ tends to $+\infty$. We compute the volumes of hyperbolic 5-manifolds constructed by quaternions using Eisenstein series. In the Appendix, V. Emery computes these volumes using Prasad's general formula. We use hyperbolic geometry in dimension 5 to describe the reduction theory of both definite and indefinite binary quaternionic Hermitian forms.